On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension

نویسندگان

  • Martin E. Dyer
  • Ravi Kannan
چکیده

We describe a simpliication of a recent polynomial-time algorithm of A. I. Barvinok for counting the number of lattice points in a poly-hedron in xed dimension. In particular, we show that only very elementary properties of exponential sums are needed to develop a polynomial-time algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing the number of lattice points in a translated polygon

The parametric lattice-point counting problem is as follows: Given an integer matrix A ∈ Zm×n , compute an explicit formula parameterized by b ∈ R that determines the number of integer points in the polyhedron {x ∈R : Ax É b}. In the last decade, this counting problem has received considerable attention in the literature. Several variants of Barvinok’s algorithm have been shown to solve this pr...

متن کامل

Integer programming, Barvinok's counting algorithm and Gomory relaxations

We propose an algorithm based on Barvinok’s counting algorithm for P→max{c′x|Ax ≤ b;x ∈ Z}. It runs in time polynomial in the input size of P when n is fixed, and under a condition on c, provides the optimal value of P. We also relate Barvinok’s counting formula and Gomory relaxations.

متن کامل

On the design and security of a lattice-based threshold secret sharing scheme

In this paper, we introduce a method of threshold secret sharing scheme (TSSS) in which secret reconstruction is based on Babai's nearest plane algorithm. In order to supply secure public channels for transmitting shares to parties, we need to ensure that there are no quantum threats to these channels. A solution to this problem can be utilization of lattice-based cryptosystems for these channe...

متن کامل

A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed

We prove that for any dimension d there exists a polynomial time algorithm for counting integral points in polyhedra in the d-dimensional Euclidean space. Previously such algorithms were known for dimensions d =1,2,3, and 4 only.

متن کامل

Counting Lattice Points in Polyhedra

We present Barvinok’s 1994 and 1999 algorithms for counting lattice points in polyhedra. 1. The 1994 algorithm In [2], Barvinok presents an algorithm that, for a fixed dimension d, calculates the number of integer points in a rational polyhedron. It is shown in [6] and [7] that the question can be reduced to counting the number of integer points in a k-dimensional simplex with integer vertices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1997